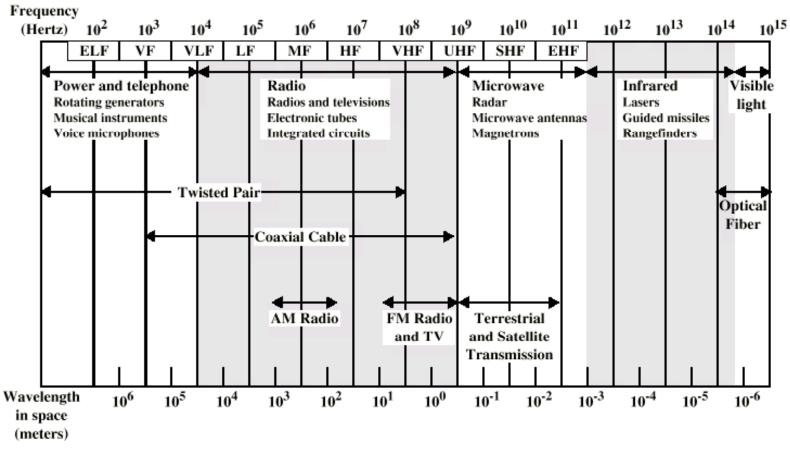


Data and Computer Communications

Transmission Media

Overview

- Guided wire
- Unguided wireless
- Characteristics and quality determined by medium and signal
- For guided, the medium is more important
- For unguided, the bandwidth produced by the antenna is more important
- Key concerns are data rate and distance



Design Factors

- Bandwidth
 - Higher bandwidth gives higher data rate
- Transmission impairments
 - Attenuation
- Interference
- Number of receivers
 - In guided media
 - More receivers (multi-point) introduce more attenuation

Electromagnetic Spectrum

ELF = Extremely low frequency

VF = Voice frequency

VLF = Very low frequency

LF = Low frequency

MF = Medium frequency

HF = High frequency

VHF = Very high frequency

UHF = Ultrahigh frequency

SHF = Superhigh frequency

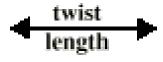
EHF = Extremely high frequency

Guided Transmission Media

- Twisted pair
- Coaxial cable
- Optical fiber

Copper Wires

- Primary medium to connect computers because
 - Inexpensive & easy to install
 - Low resistance to electric current
- When wires placed close together in parallel, interference takes place


Plastic coated wires

- To minimize interference, networks use:
 - Twisted pair
- Advantages
 - Limits electromagnetic energy emission
 - Prevents signals from other wires from interfering

Twisted Pair

- -Separately insulated
- -Twisted together
- -Often "bundled" into cables
- Usually installed in building during construction

(a) Twisted pair

Twisted Pair - Applications

- Most common medium
- Telephone network
 - Between house and local exchange (subscriber loop)
- Within buildings
 - To private branch exchange (PBX)
- For local area networks (LAN)
 - 10Mbps or 100Mbps

Twisted Pair - Pros and Cons

- Cheap
- Easy to work with
- Low data rate
- Short range

Twisted Pair - Transmission Characteristics

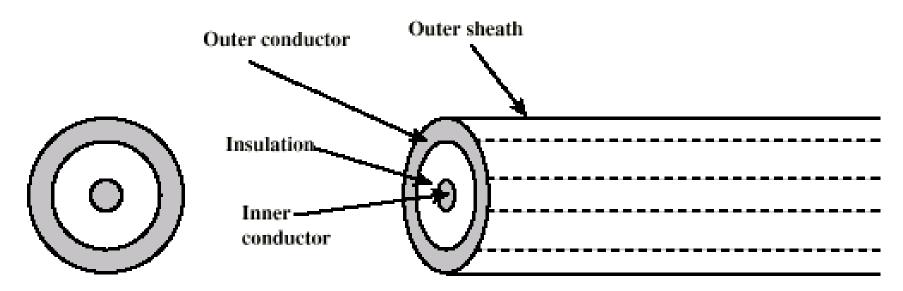
- Analog
 - Amplifiers every 5km to 6km
- Digital
 - Use either analog or digital signals
 - repeater every 2km or 3km
- Limited distance
- Limited bandwidth (1MHz)
- Limited data rate (100MHz)
- Susceptible to interference and noise

Unshielded and Shielded TP

- Unshielded Twisted Pair (UTP)
 - Ordinary telephone wire
 - Cheapest
 - Easiest to install
 - Suffers from external EM interference
- Shielded Twisted Pair (STP)
 - Metal braid or sheathing that reduces interference
 - More expensive
 - Harder to handle (thick, heavy)

UTP Categories

- Cat 3
 - up to 16MHz
 - Voice grade found in most offices
 - Twist length of 7.5 cm to 10 cm
- Cat 4
 - up to 20 MHz
- Cat 5
 - up to 100MHz
 - Commonly pre-installed in new office buildings
 - Twist length 0.6 cm to 0.85 cm

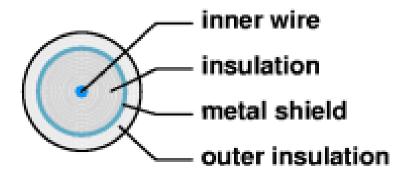


Near End Crosstalk

- Coupling of signal from one pair to another
- Coupling takes place when transmit signal entering the link couples back to receiving pair
- i.e. near transmitted signal is picked up by near receiving pair

Coaxial Cable

- -Outer conductor is braided shield
- -Inner conductor is solid metal
- -Separated by insulating material
- -Covered by padding



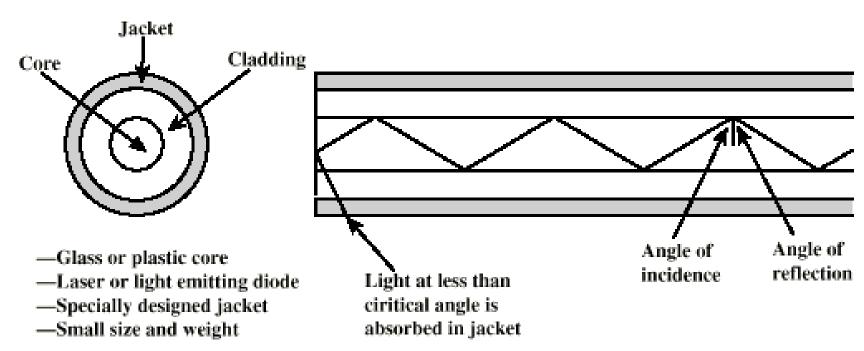
Coaxial Cable Applications

- Most versatile medium
- Television distribution
 - Ariel to TV
 - Cable TV
- Long distance telephone transmission
 - Can carry 10,000 voice calls simultaneously
 - Being replaced by fiber optic
- Short distance computer systems links
- Local area networks

Copper Wires

- Coaxial cable(coax)
 - Single wire surrounded by a heavier metal shield
 - Provides barrier to electromagnetic radiation
 - More protection than twisted pair
- Shielded twisted pair
 - A pair of wires surrounded by a metal shield

- Analog
 - Amplifiers every few km
 - Closer if higher frequency
 - Up to 500MHz
- Digital
 - Repeater every 1km
 - Closer for higher data rates



Glass Fibers

- Optical fibers uses light to transport data
- Advantages
 - Use of light eliminates interference
 - Carries of pulse of light much farther
 - Carries more information than wires
 - Requires only a single fiber
- Disadvantages
 - Installation requires special equipment
 - Difficult to locate a break in fiber
 - Difficult to repair a broken fiber

Optical Fiber

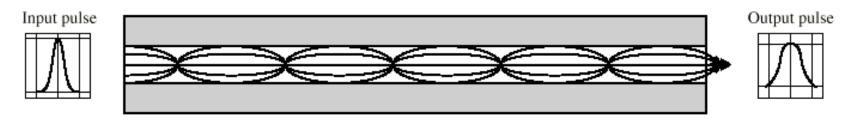
Optical Fiber - Benefits

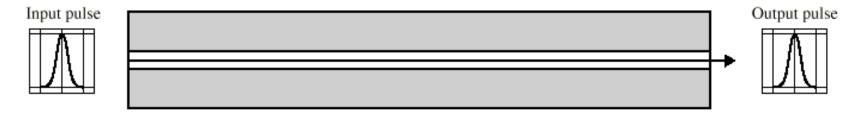
- Greater capacity
 - Data rates of hundreds of Gbps
- Smaller size & weight
- Lower attenuation
- Electromagnetic isolation
- Greater repeater spacing
 - 10s of km at least

Optical Fiber - Applications

- Long-haul trunks
- Metropolitan trunks
- Rural exchange trunks
- Subscriber loops
- **LANs**

Optical Fiber - Transmission Characteristics


- Act as wave guide for 10¹⁴ to 10¹⁵ Hz
 - Portions of infrared and visible spectrum
- Light emitting diode (LED)
 - Cheaper
 - Wider operating temp range
 - Last longer
- Injection laser diode (ILD)
 - More efficient
 - Greater data rate
- Wavelength division multiplexing


Optical Fiber Transmission Modes

(a) Step-index multimode

(b) Graded-index multimode

Wireless Transmission

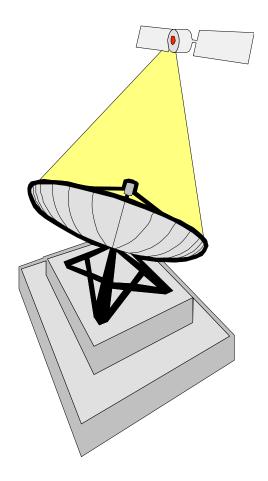
- Unguided media
- Transmission and reception via antenna
- Directional
 - Focused beam
 - Careful alignment required
- Omni directional
 - Signal spreads in all directions
 - Can be received by many antennae

Frequencies

- 2GHz to 40GHz
 - Microwave
 - Highly directional
 - Point to point
 - Satellite
- 30MHz to 1GHz
 - Omni directional
 - Broadcast radio
- \bullet 3 x 10¹¹ to 2 x 10¹⁴
 - Infrared
 - Local

Terrestrial Microwave

- Parabolic dish
- Focused beam
- Line of sight
- Long haul telecommunications
- Higher frequencies give higher data rates



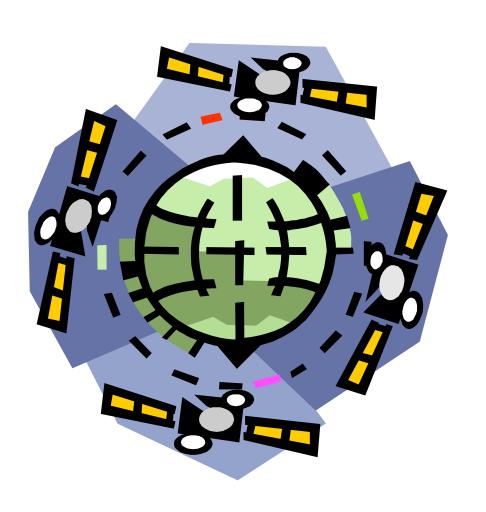
Satellite Microwave

- Satellite is relay station
- Satellite receives on one frequency, amplifies or repeats signal and transmits on another frequency
- Requires geo-stationary orbit
 - Height of 35,784km
- Television
- Long distance telephone
- Private business networks

Satellites

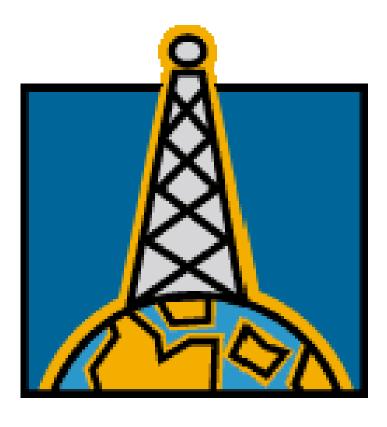
- Combined with RF technology to provide communication across longer distances
- Satellite contains a transponder which
 - Accepts incoming radio transmission
 - Amplifies it, and
 - Transmits the amplified signal
- Contains multiple transponders operating independently at different frequency

Geosynchronous Satellites


- Placed in an orbit exactly synchronized with the rotation of the earth
- Appears at exactly the same spot at all times
- Ex: A satellite above equator over Atlantic ocean

Low Earth Orbit Satellites

- They orbit a few hundred miles above the earth(typically 200-400 miles)
- Disadvantages
 - Rate at which satellite must travel
 - Can only be used during the time its orbit passes between two ground stations
 - Maximal utilization requires complex control systems



- Satellite arrays
 - Launching a set of satellites into low earth orbits
 - Each point in ground has at least one satellite overhead
- Satellites in an array communicate with one another

Radio

- Uses electromagnetic radiation to transmit data
- Operates at radio frequency
- Transmissions referred to as RF transmissions
- Does not require a direct physical connection between computers

Broadcast Radio

- Omni directional
- FM radio
- UHF and VHF television
- Line of sight
- Suffers from multipath interference
 - Reflections

Infrared

- Modulate noncoherent infrared light
- Line of sight (or reflection)
- Blocked by walls
- E.G. TV remote control, IRD port

Infrared

- Infrared technology can be used for data communication
- Limited to a small area
- Especially convenient for small, portable computers
- Advantages of wireless communication
- Light from a laser can be used to carry data

Microwave

- A higher frequency version of radiowaves
- Can be aimed in a single direction
- Can carry more information than lower frequency RF transmissions
- Cannot penetrate metal structures

Comparison of Cable Media

Cable type	Cost	Installation	Capacity	Range	EMI
Coaxial Thinnet	<stp< td=""><td>Inexpensive/ easy</td><td>10 Mbps typical</td><td>185 m</td><td><sensitive td="" than="" utp<=""></sensitive></td></stp<>	Inexpensive/ easy	10 Mbps typical	185 m	<sensitive td="" than="" utp<=""></sensitive>
Coaxial Thicknet	>STP <fiber< td=""><td>Easy</td><td>10 Mbps typical</td><td>500 m</td><td><sensitive than UTP</sensitive </td></fiber<>	Easy	10 Mbps typical	500 m	<sensitive than UTP</sensitive
Shielded Twisted-Pair	>UTP <thicknet< td=""><td>Fairly easy</td><td>16 Mbps typical, up to 500 Mbps</td><td>100 m typical</td><td><sensitive than UTP</sensitive </td></thicknet<>	Fairly easy	16 Mbps typical, up to 500 Mbps	100 m typical	<sensitive than UTP</sensitive
Unshielded Twisted-Pair	Lowest	Inexpensive/ /easy	10 Mbps typical, up to 100 Mbps	100 m typical	Most sensitive
Fiber optic	Highest	Expensive/ difficult	100 Mbps typical	10s of kilometer	insensitive